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Abstrad-Localized necking of sheet metals subject to out-of-plane punch stretching is studied. Attention
is directed to the effects of various constitutive laws on the development of localized neck. An axisym­
metric finite element analysis, within the framework of membrane theory, is carried out of the hemispheri­
cal punch stretching of a circular sheet. Three rate·independent material models are considered, namely,
classical plasticity theory with a smooth yield surface of von Mises kind. a deformation theory model of a
solid with a vertex on its yield surface, and a plastically dilating constitutive relation with pressure
dependent yielding. that models, approximately, ductile rupture on the microscale. Based on the numerical
results, forming limit curves are determined for each of these constitutive models. In contrast to inplane
stretching, the geometric effects of out-of-plane stretching makes the formation of a localized thickness
throuah possible. even if the classical plasticity theory is employed. For tile deformation theory model, tile
out-of-plane forming limit curves are shown to coincide with those for in-plane stretching. However, in
out-of-plane stretching the loading path in the sheet can differ substantially from proportional loading so
that the appropriateness of a deformation theory model of a more sophisticated ftow theory that develops a
vertex on its yield surface is questionable. The shape of the forming limit curves obtained with the model of
a progressively cavitating dilational solid depends on the localized necking criterion employed. If the
development of a thickness trough is the only criterion. then the forming limit curves obtained are virtually
identical to the corresponding flow theory curves. If a ductile rupture criterion, which limits the maximum
volume fraction of voids. is adopted the forming limit curves can differ significantly, in shape, from those
for the other two models.

l. INTRODUCTION
Two techniques are generally employed to assess the stretchability of sheet metals. One
technique, termed in-plane stretching, involves stretching a ftat sheet in a uniform and
proportional manner, while the other, termed out-of-plane stretching, is effected by stretching
an initially ftat sheet over a hemispherical punch. In each type of test, the sheet is observed to
fail by the formation of a localized neck[l-4].

As is well known, Hill's classical bifurcation analysis[5] for the onset of localized necking,
based on classical smooth yield surface rigid plasticity theory, predicts that localized necking
will not occur in a uniform ftat sheet subject to biaxial tension. In order to account for the
observation of a localized neck, two lines of attack have been taken. One, due to Marciniak and
Kuczynski[6], postulates the existence of an initial inhomogeneity, assumed, in [6], to be
equivalent to an initial local thickness reduction, which instigates necking by precipitating a
drift of the strain state in the neck toward plane strain. The other approach was initiated by
Storen and Rice [7], who showed that a simple model of a material with a vertex on its yield
surface, namely, a finite strain version of the simplest deformation theory of plasticity predicts
a bifurcation corresponding to localized necking in biaxial tension. In some recent work, carried
out within the general framework of Marciniak and Kuczynski [6], attention bas been focused
on actual material inhomogeneities[8-10]. In particular, Needleman and TriantafyJlidis(10]
employed Gurson's constitutive relation for a porous plastic solid(11] in a Marciniak-Kuc­
zynski analysis to model the role of ductile rupture on the microscale on necking. As discussed
in [10], the formina limit curves, which give the dependence of the limiting strains on the
imposed strain ratio for this plastic material model and those for the vertex model of Storen and
Rice{7] are in qualitative qreement with each other (and with experimental forming limit
curves), althougb attributing the onset of localized necking to very different physical
mechanisms.

In out-of-plane stretching, strain gradients are induced by the geometry of the test, which,
as has been noted by Ghosh and Hecker[3], results in a strain peak moving from a location of
balanced biaxial stretchina (tbe pole) toward one of plane strain (the edse). Thus, the strain
history of the region where localized necking eventually initiates can differ significantly in
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out-of-plane stretching from that encountered in in-plane stretching. Ghosh and Hecker[12]
have observed that, at least for some materials, the shapes of forming limit diagrams obtained
by the punch stretching test can be different from those obtained by means of in-plane stretching.

Here, we analyze the punch stretching of an initially flat circular sheet over a rigid
hemispherical punch (as sketched in Fig. I). Three isotropic rate-independent constitutive laws
are considered: (i) classical plasticity theory with a smooth yield surface of von Mises kind, (ii)

a deformation theory model of a solid with a vertex on its yield surface[7], and (iii) Gurson's
porous plastic constitutive relation [II J, that models, approximately, ductile rupture on a
microscale.

The finite element method is employed to take into account the complications characterizing
this problem, namely, moving boundary conditions, the frictional force on the contact region,
and finite deformations. Most previous analytical studies of punch stretcbing have focused on the
stress and strain distributions in the sbeet[13-J7]. Here, as in [3J, we direct attention to the
onset of localized necking.

Fig. I. Configuration of a hemispherical punch stretching operation.

2. FIELD EQUATIONS

Considering an initially flat sheet biaxially stretched over a rigid punch, we assume the
thickness of tbe sheet is much smaller than the radius of curvature of the punch and the radius
of curvature of the sheet itself so that the variation of stress and strain across the thickness is
negligible, With this assumption, the well-known membrane theory can be adopted.

The formUlation of the field equations employed here is Lagrangian in character. In the
reference configuration, the sheet surface and its periphery are denoted by So and Co, the base
vectors on and normal to the sheet surface are denoted by L and D and the covariant
components of the metric tensor are denoted by gij with determinant g, while those in tbe
current configuration are denoted by Glj and G. Hereafter, Greek indices rallie from 1to 2, and
Latin indices range from 1 to 3. A material point is identified by a position vector x in the
reference configuration, and Xin the current configuration, therefore

X= x+ u"g" + wn (1)

where u" and w are the contravariant components of the displacement vector on the reference
coordinate system.
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If the unstressed state is used as the reference configuration, the increment of Lagrangian
strain is given by

(2)

where a dot denotes differentiation with respect to some monotonically increasing parameter
that characterizes the load history and (),i denotes covariant differentiation in the reference
coordinate systems.

The incremental principle of virtual work takes the form

where the strain increment variation 8r,a/3 is related to the displacement increment variation l)ua
by eqn (2), to denotes the initial sheet thickness, Ta and T are the contravariant components of
the traction vector per unit undeformed surface area on So, Fa and F are the contravariant
components of the force vector per unit original length along Co and Taf3, the contravariant
components of the Kirchhoff stress tensor on the embedded current coordinates, are related to
the contravariant components of the Cauchy stress tensor ua/J by

(4)

3. CONSTITUTIVE RELATIONS

The constitutive equation relating the stress rate and the strain rate is written in a form

(5)

The time-independent material models on which the investigation are based include (I) a
classical plasticity theory with a smooth yield surface of von Mises kind, (2) a deformation
theory type model with a vertex on its yield surface and (3) a model that accounts ap­
proximately for void growth on the microscale. The uniaxial stress-strain curve both of the
material in the first two models and of the matrix material. rather than the void-matrix
agregate, in the third model is assumed to be characterized by a modified power law with
continuous tangent modulus at u =u" that is,

{

01U y if u ~ U y

f/Ey = I 1
_(...1u )m_-+l ifm VI y m u>uy

(6)

where f and u are the natural-strain and true-stress in an uniaxial tension test, Ey is the yield
strain and m is the strain-hardening exponent.

3.1 Classical plasticity theory
A finite strain generalization of J2-flow theory with isotropic hardening, due to

Hutehinson[l9J, is adopted. The total strain increment is written as the sum of the elastic strain
increment r,ij and the plastic strain increment r,t. The elastic strain increment is given by the
expression

(7)

where E is Young's modulus. p Poisson's ratio, 3-kI are the contravariant components of the
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Jaumann derivative of (1k!, and they are related to the convective derivative Uki by

The generalized flow rules takes the form

";1?=~A ('!_'!)c<"u1n'
'/lJ 2 E, E "'/ • v.

with

3 r!"* kJU =- G/u'Vl' ~IJ (T
• 2(1. 1'""

A={I if (1. =. Y and 0-. ;a. 0
o if (1. < Y or (1. = Y and a. < 0

(8)

(9)

where the parameter E1 is the slope of the uniaxial true~stress/natural·strain curve, Y denotes
the flow stress, which is the larger of the initial yield stress (1y and the maximum of (1. over the
stress history.

The relation between fii and uii derived from eqn (4) is

( 10)

By inverting the sum of eqns (7) and (9), together with eqns (8) and (10), the tensor of
moduli for this model is obtained.

Liiki = I(G)-.!L {!(GikGii +GikGiI)+_v_ GiiGki -Ah SjiSki }V g 1+ v 2 1- 2v I

_! (Gik'T'il +Gil'T'ik +Gik'T'iI +Gil'T'ik )+Gki'T'ii (11)
2

where

3 EIE/-l 1
hI ='2 EIE,- (1-2v)/3 (T.2·

This formula can be simplified, since the volume change is entirely due to the elastic strain,
which remains small. Thus, the approximations of (Glg)I/2 by 1 and (Tii by 'T'ii will involve little
error. The moduli in (II) then reduce to the symmetric moduli:

Ukl =....!L. {! (GikGII +GikGil )+_11_ GiiGkl - AhlSiiSkl}
)+" 2 1-2"

- ~ (Gik"p +Gil~ +G/k'T'il +GU~). (12)

In this model it is assumed that the yield surface in stress space is smooth and the yield
criterion is pressure~insensitive. The effects of deviations from these assumptions on the
stability of plastic flow against localization for an out.of~plane sheet stretching problem are
explored by employing the next two approximate models.
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3.2 De/ormation theory
The finite strain generalization of J2 deformation theory uses the same expression, eqn (7),

for the elastic strain increment and the plastic strain rate is taken to be

. 3 (1 I) . 3(1 1)(GG*1d 1Gr!*.')TJI?· = - --- SoU +- --- iJ: /IU -- ·<U.tcT
II 2u, E, E. II' 2 E. E 3 II

(13)

here E.. is the secant modulus. that is the ratio of stress and strain, for the uniaxial
true-stress/natural-strain curve at stress level u,.

Now, invert the sum of eqns (7) and (13), and applying the same approximation about the
volume change as in the preceding model, the symmetric tensor of moduli is obtained as in[20]

where

Vikl =~ {! (GikG/1+GlkGiI )+_11_,_ Gi/GId - Ah2Si/Sid }
I+ II.. 2 1- 211.

_! (GikT/1+G/ITik +GlkTiI +GiJ~)
2

~, =i+~ (i. -~)
_~ E,/E,-1 1

h2 - 2 E,/E, - (1- 211,)/3;;:'

(14)

This approximate model for ftow theory behavior under fully active stress increment at a
yield vertex was developed by Rudnicki and Rice(21) and StOren and Rice [7]. As
discussed by these authors, path-independence does not hold except for two special cases,
namely, when the strains are small. or when the principal axes of the material strain ellipsoid
are fixed relative to the material, as will be the case in the specific problem analyzed here.

3.3 Void growth model
The model adopted here was proposed by Gurson[lI]. Based on the approximation of a

solid with volume fraction / of voids by a homogeneous spherical body with a concentric
spherical cavity, together with the assumptions that a ftow rule of von Mises kind holds for the
matrix material, and the yield function remains effectively isotropic, the following governing
equations result.

The combined stress yield condition is given by

(15)

where U m is the tensile ftow strength of the matrix material.
The plastic strain rate obtained from the consistency condition ~ =0 is

(16)

with

{ I (U 2 f!Je:!.)2 [(G i/) ]}H = (1_ f)(l/E,-l/E) ~+ ~m -3um(l- f)a cosh ~ - f

a = ~ f sinh (GijUi//2um ).
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The convective rate of Urn is determined by

( 17)

The void volume fraction increases because of the growth of existing voids and is of rate

(18)

Equation (7) is used for the elastic strain rate. The inverse of (15) together with (6) then
gives the generalized tensor of moduli in the form:

(19)

where

It is noticed that the tensor of moduli for this particular pressure sensitive plasticity model is
not symmetric because of the volume change induced by the containing voids. Although several
rather arbitrary approximations are made in deriving this model, we note that good agreement
has been obtained by Tvergaard in a recent bifurcation analysis [40], for a plane-strain problem,
between this model and a classical elastic-plastic material model with a doubly periodic array
of circular cylindrical voids.

4. PROBLEM FORMULATION

As illustrated in Fig. I, a circular sheet of radius R, with clamped periphery, is pressed
downward by a rigid hemispherical punch. A cylindrical coordinate system (r, 8, z) is employed
and attention is restricted to axisymmetric deformations. The r, 8 and z directions are the three
principal axes and will remain fixed relative to the material throughout the deformation history.
Due to the assumed axisymmetry and small thickness, there is no dependence on 8 and z of any
field quantity. Furthermore, the displacement in 8 direction vanishes.

A material point, identified by its reference position vector rg" has its current position
expressed as

x = (r +u(r))g, + w(r)n.

Components of the metric tensors for both the reference and current configurations are

( dU)2 (dW)2
Gil = 1+ dr + dr ' (21)

The volume ratio associated with the deformation is

(22)

For notational simplicity, in the following formulation letter-subscripts r, 8 and n are used
to denote the physical components of a variable. Therefore, those of the strain increment,
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according to eqn (2), are

. =Gil' = [(I +dU) dti +dw dW]/[(1 +dU)2 + (dW)2]
11, 1711 dr dr dr dr dr dr

'l'j8 =G22'1'j22 = li/(r+ u).

919

(23)

The third principal strain is tit, which can be obtained as a function of 'I'j, and 'l'j8 by
considering the plane stress asumption:

That is, we then obtain

The constitutive eqn (5) can be rewritten in a form

7, =L~'I'j, +L;''l'j8

78 =L~,'I'j, + L~8'1'j8

with

i,i = rand 8

(24)

(25)

and Lm Lre, Lrn etc. are based on eqns (12), (14) and (19) for the various material models
considered here.

The left hand side of governing eqn (3) represents the internal virtual work. By employing
eqn (23) and (25), it can be expanded in terms of u, wand their derivatives.

Calculating the external virtual work, the r.h.s. of eqn (3), requires proper consideration of
the boundary conditions. First, it is noticed that the second integral makes no contribution
along the clamped periphery Co. Second, the surface area So can be divided into Sp, where the
sheet is in contact with the punch and Sf' where the sheet is not in contact with the punch and
free of traction. The only non-vanishing external virtual work therefore is from integral over
region Sp.

On Sp, because of the rigidity of the punch, the radial and vertical displacements u and w
are related to each other by a constraint equation:

r + u(r) =P[ w(O) - w(r)] (26)

where P is the shape function of the punch. For a hemispherical punch of radius A, as in this
problem, P is {A 2 - [A - w(O) +w(r)]2pl2.

For the convenience of the following derivation, Nand G, are adopted to denote the current
unit base vectors, which are normal and tangential to the sheet surface (Fig. I). The traction T
is decomposed into pN and - T,G,. The interfacial pressure between the punch and the sheet
per unit current area, p, can be computed from the equilibrium condition in direction N, that is,

where 1(, and 1(8 are the radial and circumferential curvature of the sheet. For the present case,
K, =1(8 = l/.A. Thus, pressure per unit reference area, P, is

(27)
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If Coulomb friction is assumed, Tr, which represents the interfacial frictional force, then is of
value equal to or less than (JLp) depending on whether or not there is relative displacement
between punch and sheet (IJ. is the coefficient of friction). Furthermore, in the latter case, there
is no contribution to the external virtual work due to the fact that no variation of displacement
in region Sp is allowed.

Now, considering the case with relative displacement in Sp, the total increment of traction
includes two parts, one from changes in magnitude of p and Tr, the other from the change in
directions Nand G,. The latter can be obtained from geometry, and written as

N= urlA G" G,=-u,IAN

where Ii, is the displacement increment In the direction tangential to the sheet surface.
Combining the two effects, we obtain

t =(P + JLPu,IA)N +(- JLP +pu,IA)G,. (28)

The decomposition of variation of displacement increment, on the other hand, can be
simplified by the following equation, derived from eqn (26).

p' =- fJitlfJw =(I +dU)/dW ::: N INdr dr n r

where pi denotes the derivative of Pwith respect to its argument. N, and Nn are the components of
N in directions gr and n respectively. Therefore, it leads to

fJun= NrfJu + NnfJw ::: 0

fJut ::: Nnou - N,fJw ::: - owlN,. (29)

Here, we have used the relation N,2 + Nn
2 =1. This, together with eqn (28), gives Nr and Nn as

a function of U and w,

=dW/[ dU)2 (dW)2]112
Nr dr I+dr + dr '

::: ( dU)/[( dU)2 (dW)2]'/2Nn I + dr I + dr + dr .

The external virtual work is the inner product of t and ti, and from (28), (29), and the
constraint eqn (26), we obtain

(30)

Equation (30) is applicable for any axisymmetric punch stretching problem with varying radius
of curvature. It can also be shown that when the general formulation given in [161 is specialized
to axisymmetric deformations, it coincides with the present formulation.

The numerical method adopted to solve the eqn (3) for the displacement unknowns is
discussed in [411.

5. NUMERICAL RESULTS

In out-of-plane stretching, unlike in-plane stretching, a non-uniform strain distribution
occurs from the very beginning of the loading process. The peak strain first occurs at the pole
of the punch. Then, because of the constraint caused by the rigidity of the punch and/or by the
frictional force between the punch and the sheet, the part of the sheet in contact with the punch
is limited in stretching. This has the effect of shifting the peak strain locatiol'l outward and,
consequently, of distributing the strain more uniformly. Meanwhile, the decrease in the strain
hardening rate of the sheet metal generates an opposite effect; namely, the strain increment
tends to localize at the peak. When the localizing effect overpowers the distributing effect, peak
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propagation stops; the accumulation of strain at the peak then begins, which leads to very rapid
strain localization.

In this stretching process, different strain distributions and therefore different limit strain
states, can be obtained by varying the curvature of the punch, the coefficient of friction and the
strain hardening characteristics of the material. Figure 2 illustrates the effect of the coefficient
of friction, jL, on the radial strain distribution at a fixed value of the punch depth, hIA. The
results shown in Fig. 2 were obtained employing the classical smooth yield surface flow theory
constitutive model, (12), with a strain hardening exponent, m, of 5. As can be seen in this figure,
increasing friction leads to a less uniform strain distribution and shifts the strain peak radially
outward. It was also found that, for a fixed value of the coefficient of friction, increasing the
strain hardening exponent increases the strain concentration at fixed punch depth. However, in
this case, the strain peak was found to shift radially inward, toward the pole. In Fig. 2, a punch
radius slightly smaller than the sheet radius (AIR =0.96) was employed. A number of cal­
culations were also carried out for several smaller values of the punch radius (AIR = 0.72,0.48,
0.29). Figure 3 shows that the effect of varying the punch radius on the forming limit curve,
which will be discussed later, is slight, over the range displayed, although, the limit strain
attained for a fixed value of the frictional coefficient, jL, vary significantly with the punch radius.
The results to be displayed subsequently were obtained employing a punch radius to sheet radius
ratio of 0.96.

To represent the formability of sheet metals, Keeler and Goodwin introduced the concept of
the forming limit curve [22, 23], which gives the dependence of the limit strain, or the onset of
localized necking, on the imposed strain ratio. Here, since the whole sheet is under biaxial
stretching, and the peak strain must occur somewhere between the edge and the pole, only part
of the forming limit curve can be obtained by assigning a different frictional coefficient jL to the
punch-sheet interface. The values of JL employed range from 0, for an ideally lubricated contact
surface, to 0.75, for a rough contact surface.

Several experimental methods of measuring limit strains have been proposed[I-4]. The
criterion that will be adopted here identifies the onset of localized necking with the appearance
of a visible local thickness trough or local failure [24]. Of course, the experimentally employed
criterion of "the appearance of a visible local thickness reduction" cannot be unambiguously
defined numerically. However, the numerical results revealed that, when classical smooth yield
surface plasticity theory was employed, a localized thickness reduction occurred shortly after
the onset of strain rate reversal somewhere in the sheet (the strain rate reversal usually
occurred first at the pole). Therefore, within the context of classical smooth yield surface
plasticity theory, the onset of localized necking is identified as that point in the loading history
at which unloading occurs. Figure 4 illustrates the typical development of a local thickness
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Fig. 2. Elect of the frictional force between the punch and the sheet on the strain distributions for
classicalllow theory with m=5. The strain distn"butions of a punch depth, 1t/A '"' 0.59, are shown.
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Fig. 3. Effect of the punch radius to sheet radius, AIR. on the forming limit curve for classical flow theory
with m =5.
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4 0.12
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Fig. 4. Development of a local thickness troUJh in the sheet for classical flow theory with m =5 and
IL = 0.25.

trough. The corresponding in-plane strain distributions are shown in Fig. 5. Here, the dotted line
shows the boundary of the contact area of the sheet.

The forming limit curves predicted by smooth yield surface flow theory, for three values of
the strain hardening exponent, m = 2,5,8, are shown in Fig. 6. The limit strain state is defined
as the strain state at the location of the thickness trough at the onset of unloading. The limit
strains rise rapidly as the degree of biaxiality increases. The dotted lines show, for the material
with m = 5, the strain path that the material at the point at which the local neck develops
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FiS. 5. (a) Radial and (b) eitcumfer~ntial strain distributions for classical flow tlreory with m" 5 and
p. =tl.25. The dashed curves show the boundary of the contact area.

follows to the limit state. Generally. the strain path deviates less from a proportional one when
the critical location is nearer to the pole.

YJIUfC 7 displays the corresponding in.plane strain distributions obtained by using defor~

mation theory. For comparison purposes, the strain distributions according to the smooth yield
surface flow theory, at a punch depth, h/A, of 0.50 are also shown. At a given punch depth, the
deformation theory gives rise to a less uniform strain distribution.

As the punch depth increases. strain rate reversal also occurs in the deformation theory
analysis, at h/A = 0.50. in Fig. 7. Here, in the deformation theory analysis, when strain rate
reversal occurs. the material point is permitted to reverse its path in strain space (as it would
for a nonlinear elastic material) rather than unload with the initial elastic slope as for an
elastic-plastic material.

The motivation for employing deformation theory is as a model for a material with a yield
surface vertex. As noted by Hill (28). the discrete nature of crystalline slip leads to the
prediction of a vertex on the yield surface, at least for very small olset plastic strain definitions
of yield. Calculations for various poIycrystaJ models carried out by Lin[29] and Hutcbinson[30)
do. indeed. exhibit such yiekI surface vertices. Although a deformation theory type formulation
of vertex elects may be appropriate for the analysis of bifurcations from proportional. or
nearly proportional. deformation paths (as in the analysis of in-plane sheet neckina[7J). such a
model of vertex effects is undoubtedly inadequate for treating the drastic alterations in
direcdon encountered Iaere. While the ra. of alterations in deformation path that can be
represented by a deformation theory vertex model depends on the details of the response at tbe
underlyina vertex, tbe justification (or deformation theory rests on the concept of "fully active
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Fig. 6. Forming limit curves for classical now theory with m ~ 2. 5. 8. with each of the dashed curves
representing the strain path followed by the critical material point.
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Fig. 7. (a) Radial and (b) circumferential strain distributions for deformation theory with m ~ 5 and
Il == 0.25. and its comparison with the now theory results at hiA ~ 0.50. The dashed curves show the

boundary of the contact area.
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loading", in the sense that every loading function, once stressed to yield, does not unload [25­
27]. Clearly, when strain rate reversal occurs, any justification for deformation theory as a
vertex' model is lost. Nevertheless, the deformation theory calculations themselves can be
continued beyond the point of strain rate reversal. When this is done, it is found that a
singularity in the equilibrium equations is encountered, as was also encountered in [14]. In [41]
an analysis is given, for an incompressible material, which demonstrates that, for a pure power
law hardening material, the local strain state at which this singularity is encountered is given by
the expression obtained in [7] for the in-plane forming limit curve.

Figure 8 displays the forming limit curves predicted by deformation theory. The lower
(dashed) curves correspond to the point of strain rate reversal while the upper (solid) curves
correspond to the point at which the singularity was encountered. For a lightly hardening
material (m =8), the difference between these two curves is slight, while for a high hardening
material (m =2), the difference is substantial. Here, as in Fig. 6, the strain paths followed by the
material point at which a singularity develops, for the case m=5, are displayed. These curves
show that while the deviation from proportional loading of the eventual critical point is
significant, it is not drastic.

The solid curves in Fig. 8 coincide (within 4%, due to the combined effects of elastic
compressibility and numerical error) with the forming limit curves theoretically predicted in
[41]. If it is presumed that deformation theory is an acceptable vertex model for the sort of
deviations from proportional loading depicted in Fig. 8, then the solid curves would properly be
identified as the forming limit curves. Due to strain rate reversal, the deformation theory model
would be inappropriate in part of the sheet, but the solid curve, as shown in [41], just depends
on the local strain state. These curves exhibit much less dependence of the limit strain on the
degree of biaxiality and much smaller limit strains than those obtained by classical smooth yield
surface flow theory.

For the void growth model, two uniform initial void volume fractions (/0 =0.01 and 0.03) are
used in the calculations. Changes in the numerical results from the corresponding predictions
for flow theory (which is the limiting case of the void growth model when 10 =0) due to the
presence of the voids are: the peak of the strain distribution is slightly shifted toward the pole,
so that the limit strain state is one with a higher degree of biaxiality. Both the thickness strain
and the load capacity corresponding to the same punch depth, hlA, decrease. Most significantly,
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Fia. 8. Fonnilll limit curves for deformation theory with m • 2, S, 8, with each of the dashed curves
representing the strain path followed by the critical material point.
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Fig. 9. Void volume fraction distributions at various stages of the deformation history for m =5. tn =0.03
and p. = 0.10.

a non-uniform void volume fraction distribution results from the initial uniform state. This void
volume fraction distribution is plotted in Fig. 9, for m =5, 10 =0.03 and p, = 0.1, as a function of
the initial radial position of a material point, r/R, for various values of hlA.

Despite these differences, the process of forming a local thickness trough and the critical
punch depth associated with it are hardly changed from the corresponding ftow theory results.
Therefore the forming limit curve, determined in the same manner as in ftow theory; namely, by
the onset of unloading, coincides with the ftow theory prediction except that the limit strain
state attained for a fixed value of p, is slightly closer to the equal biaxial tension state.

Shown in Fig. 10 are the growth of the void volume fraction f at the location, where the
thickness trough essentially forms, vs the punch depth for cases with m =8 and various values
of p,. Arrows indicate the stage when the formation of a local neck begins. As expected, the
voids grow with an increasing rate as deformation goes on. A large void volume fraction can
then be achieved, even prior to the onset of unloading, as in the case with p, = 0.10. Adramatic
localized increase of porosity is always observed after the geometry-induced local neck is
formed. The increased localized porosity can lead to ductile rupture. However, within
the framework of Gurson's model[6, 7] an independent ductile rupture criterion (other than 1-+ 1)
must be chosen.
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Fig. 10. Growth of void volume fraction as a function of the punch depth for m ". 8, /0 =0.03 aDd various
values of frictional coefficient.
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A number of approximate models for void coalescence (see, e.g. Brown and Embury[39J)
have been proposed. Essentially, these models suggest that void coalescence takes place when
a slip plane can be developed between voids, which leads to a coalescence criterion that a
critical void spacing of a constant of order unity times the void radius be achieved. Assuming a
uniform spatial void distribution in the material, the critical void spacing can be translated into a
void volume fraction, 1max' A representative range of the maximum void volume fraction at
coalescence, lmu' lies between about 0.10 and 0.16. Several values of lmax within this range are
adopted. The fracture strain curves, defined by the strain state at which this maximum void
volume fraction criterion is satisfied, are displayed in Fig. 11 as the curves with cross signs. The
level of these curves is very sensitive to the initial void volume fraction and the value of 1max,
but the negative slope remains the same, even for different strain hardening components. The
negative dependence on the degree of biaxiality is in reasonable agreement with Ghosh's
experimental fracture strain curve (the dashed curve)[18]. The forming limit curves obtained by
adopting the ductile fracture criterion are shown in Fig. 11 for 10 =0.03 and m =2, 5and 8. The
resulting peak-shaped curve has a rising portion, which is the same as for ftow theory, for states
nearer to plane strain and a falling portion, with the ductile fracture criterion met before the
formation of a local neck, for states nearer to equal biaxial tension. With the value of1max fixed,
the falling portion is more limited to states of high biaxiality for higher strain hardening
exponents. For m = 2, the rising portion of the curve obtained here does not intersect one of
the lmax curves, neither does the rising curve obtained for the the case with 10 =0.01. Therefore,
for these cases Gurson's model predicts the same forming limit curves as ftows theory does.

Shown in Fig. 12 are the normalized punch load, PI2",KtoA, as a function of punch
depth, hIA, for all three models, with m =5 and JL =0.1 and 0.75. K is defined as
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Fig. 12. Normalized punch load vs punch depth for three constitutive laws with various values of p..

uy(mf£y)t/m so that for very large strain the stress strain relation (6) can be written as fT'" = KE.
For the case with low iL, the formation of a local neck, marked by arrows, is seen to be very
close to the maximum load points. With the frictional force increasing, the local neck is seen to
form much earlier than the maximum load. It is also noticed that deformation theory predicts
the same load vs punch depth curve as flow theory does; until the point at which the singularity
is encountered (indicated by a cross sign in the figure). Therefore, for deformation theory the
limit state is always reacbed while the load is still increasing.

6. DISCUSSION

In punch stretching, classical smooth yield surface plasticity theory predicts the occurrence
of a localized thickness trough, as illustrated in Fig. 4, without invoking the hypothesis of an
initial inhomogeneity. Nevertheless, as compared with experimentally obtained forming limit
curves, e.g. in [I2l, flow theory appears to predict hpr limit strains and a greater strain ratio
dependence. This discrepancy, together witb the fact that for in-plane sheet stretching un­
realistically large initial imperfections are needed to obtain predicted limit strains in line with
experimental ones, suggests that the classical flow theory is not adequate for analyzing
localized necking in sheets. although, as illustrated in Fig. 12. the punch load-punch depth curve
does not depend significantly on the constitutive model employed.

Factors that have not been taken into account in the calculations, which effect the sbape and
level of tbe resulting forming limit curves, include material anisotropy, material strain rate
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dependence and sheet thickness effects. Material anisotropy, based on results from analyses of
in-plane sheet necking[3l}, is not expected to greatly influence the level or shape of forming
limit curves, at least for moderate normal anisotropy. Both material strain rate
sensitivity[24, 32, 33] and sheet thickness effects [34] have a stabilizing influence. Here attention
has been directed to those factors that promote local necking in out-of-plane sheet stretching.

Analysis of in-plane sheet necking carried out in [7] and [10] suggests that both vertex
effects and the weakening induced by incipient ductile rupture provide plausible mechanisms to
account for the observed shapes of in-plane forming limit curves. As discussed in [10], the
predictions of these two analyses concerning the shapes of in-plane forming limit curves are
qualitatively similar and consistent with the general experimental trends, although attributing
the onset of localized necking to very different physical mechanisms. In contrast, the out-of­
plane forming limit curve predictions of the deformation theory model and the void growth
model are very different, comparing Figs. 8 and 11.

The limitations regarding the interpretation of deformation theory as a vertex model, in the
context of the present problem, have been discussed in the previous section. However, as
illustrated in Fig. 8, for strain states near equal biaxial tension, the departure of the deformation
path, of the point at which the singularity occurs, from proportional loading is not great.
Presuming that deformation theory is an acceptable, albeit approximate, model for such nearly
proportional (as well as exactly proportional) loading paths, the in-plane and out-of-plane
forming limits would not be expected to differ substantially for low and moderately hardening
materials near equal biaxial stretching, when vertex effects are the mechanism for triggering
localized necking. It is important to note here that as illustrated in [20J and [34], three
dimensional effects could significantly delay the appearance of a visible thickness trough
beyond the point at which the plane stress singularity is encountered. This, of course, applies to
in-plane as well as out-of-plane stretching.

The forming limit curves obtained here employing the void growth model in punch
stretching differ substantially in form from those obtained in [10] for in-plane stretching.
Furthermore, here, unlike in [10], no initial local increase in void concentration is needed to
initiate necking. The model employed here to model the effects of rupture on the microscale is
highly idealized; in particular, the unrealistic assumption is made that all voids are initially
present rather than nucleating during the deformation history and a somewhat arbitrary ductile
rupture criterion is adopted. Nevertheless, some of the results are suggestive. One is that the
model predicts that for states nearer to plane strain a visible local thickness trough precedes
fracture, while for states nearer to equal biaxial tension fracture precedes the development of a
local thickness reduction. It is interesting to note that the development of a peak limit strain, at
a strain state intermediate between plane strain and equal biaxial tension was obtained by
Ghosh[18J, in an analysis of in-plane stretching, by postulating the existence of a fracture
strain. This sort of peaked forming limit curve has been observed experimentally, e.g. [35J. Also,
Jalinier and Baudelet[36] have studied the implications of void growth for localized necking,
within the framework of the Marciniak and Kuczynski model[6J and have, by density change
measurements, deduced the void concentration history in a specific steel.

When Keeler and Goodwin [22, 23J first introduced the concept of a forming limit curve,
they intended to reprd it as a material property. Indeed, it bas been widely applied in this
way, although Ghosh and Hecker[l2] have pointed out that in-plane and out-of-plane forming
limit curves can be observed to differ. With due regard for the highly approximate nature of the
models employed here to represent vertex effects and ductile rupture on the microscale, one
implication of the present results is that when the former mechanism is responsible for
triUering localized necking the difference between in-plane and out-of-plane forming limit
curves can be expected to be much less than the difference when the latter mechanism induces
localized necking.

The investigation of more realistic models which account for the discrete nature of
crystallographic slip and ductile rupture on the microscale seems warranted in out-of-plane
stretching, since, unlike for the in-plane case, these mechanisms appear to predict very
differently shaped forming limit curves. Of course, the dominant physical mechanism respon­
sible for triggering localized necking may very well be material dependent and, for a given
material, may even depend on the deformation history. An experimental program, elucidating
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the role of various mechanisms, including ductile rupture, in limiting the ductibility of various
aluminum alloys has been carried out by Embury and leRoy [38].

Although the present results are qualitatively revealing concerning the implications of these
two mechanisms for the shapes of out-of-plane forming limit curves, the development of more
sophisticated models, undoubtedly including the effects of material strain rate sensitivity and
anisotropy, appears necessary before reasonable quantitative predictions of the forming limit
curves of real materials can be made.
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